3.4 \(\int \sqrt {e \cot (c+d x)} (a+a \cot (c+d x)) \, dx\)

Optimal. Leaf size=71 \[ \frac {\sqrt {2} a \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {e} \cot (c+d x)+\sqrt {e}}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{d}-\frac {2 a \sqrt {e \cot (c+d x)}}{d} \]

[Out]

a*arctanh(1/2*(e^(1/2)+cot(d*x+c)*e^(1/2))*2^(1/2)/(e*cot(d*x+c))^(1/2))*2^(1/2)*e^(1/2)/d-2*a*(e*cot(d*x+c))^
(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 71, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3528, 3532, 208} \[ \frac {\sqrt {2} a \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {e} \cot (c+d x)+\sqrt {e}}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{d}-\frac {2 a \sqrt {e \cot (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[e*Cot[c + d*x]]*(a + a*Cot[c + d*x]),x]

[Out]

(Sqrt[2]*a*Sqrt[e]*ArcTanh[(Sqrt[e] + Sqrt[e]*Cot[c + d*x])/(Sqrt[2]*Sqrt[e*Cot[c + d*x]])])/d - (2*a*Sqrt[e*C
ot[c + d*x]])/d

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3532

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-2*d^2)/f,
Subst[Int[1/(2*c*d + b*x^2), x], x, (c - d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x
] && EqQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \sqrt {e \cot (c+d x)} (a+a \cot (c+d x)) \, dx &=-\frac {2 a \sqrt {e \cot (c+d x)}}{d}+\int \frac {-a e+a e \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx\\ &=-\frac {2 a \sqrt {e \cot (c+d x)}}{d}-\frac {\left (2 a^2 e^2\right ) \operatorname {Subst}\left (\int \frac {1}{2 a^2 e^2-e x^2} \, dx,x,\frac {-a e-a e \cot (c+d x)}{\sqrt {e \cot (c+d x)}}\right )}{d}\\ &=\frac {\sqrt {2} a \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {e}+\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{d}-\frac {2 a \sqrt {e \cot (c+d x)}}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.29, size = 154, normalized size = 2.17 \[ -\frac {a \sqrt {e \cot (c+d x)} \left (8 \, _2F_1\left (-\frac {1}{4},1;\frac {3}{4};-\tan ^2(c+d x)\right )+\sqrt {2} \sqrt {\tan (c+d x)} \left (2 \tan ^{-1}\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-2 \tan ^{-1}\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )+\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )-\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )\right )\right )}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[e*Cot[c + d*x]]*(a + a*Cot[c + d*x]),x]

[Out]

-1/4*(a*Sqrt[e*Cot[c + d*x]]*(8*Hypergeometric2F1[-1/4, 1, 3/4, -Tan[c + d*x]^2] + Sqrt[2]*(2*ArcTan[1 - Sqrt[
2]*Sqrt[Tan[c + d*x]]] - 2*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]] + Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c
 + d*x]] - Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])*Sqrt[Tan[c + d*x]]))/d

________________________________________________________________________________________

fricas [A]  time = 0.65, size = 236, normalized size = 3.32 \[ \left [\frac {\sqrt {2} a \sqrt {e} \log \left (-\sqrt {2} \sqrt {e} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} {\left (\cos \left (2 \, d x + 2 \, c\right ) - \sin \left (2 \, d x + 2 \, c\right ) - 1\right )} + 2 \, e \sin \left (2 \, d x + 2 \, c\right ) + e\right ) - 4 \, a \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{2 \, d}, -\frac {\sqrt {2} a \sqrt {-e} \arctan \left (\frac {\sqrt {2} \sqrt {-e} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} {\left (\cos \left (2 \, d x + 2 \, c\right ) + \sin \left (2 \, d x + 2 \, c\right ) + 1\right )}}{2 \, {\left (e \cos \left (2 \, d x + 2 \, c\right ) + e\right )}}\right ) + 2 \, a \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{d}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)*(a+a*cot(d*x+c)),x, algorithm="fricas")

[Out]

[1/2*(sqrt(2)*a*sqrt(e)*log(-sqrt(2)*sqrt(e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))*(cos(2*d*x + 2*c)
 - sin(2*d*x + 2*c) - 1) + 2*e*sin(2*d*x + 2*c) + e) - 4*a*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)))/d,
 -(sqrt(2)*a*sqrt(-e)*arctan(1/2*sqrt(2)*sqrt(-e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))*(cos(2*d*x +
 2*c) + sin(2*d*x + 2*c) + 1)/(e*cos(2*d*x + 2*c) + e)) + 2*a*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)))
/d]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \cot \left (d x + c\right ) + a\right )} \sqrt {e \cot \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)*(a+a*cot(d*x+c)),x, algorithm="giac")

[Out]

integrate((a*cot(d*x + c) + a)*sqrt(e*cot(d*x + c)), x)

________________________________________________________________________________________

maple [B]  time = 0.43, size = 337, normalized size = 4.75 \[ -\frac {2 a \sqrt {e \cot \left (d x +c \right )}}{d}+\frac {a \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )}{4 d}+\frac {a \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{2 d}-\frac {a \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{2 d}-\frac {a e \sqrt {2}\, \ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )}{4 d \left (e^{2}\right )^{\frac {1}{4}}}-\frac {a e \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{2 d \left (e^{2}\right )^{\frac {1}{4}}}+\frac {a e \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{2 d \left (e^{2}\right )^{\frac {1}{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(d*x+c))^(1/2)*(a+cot(d*x+c)*a),x)

[Out]

-2*a*(e*cot(d*x+c))^(1/2)/d+1/4*a/d*(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1
/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+1/2*a/d*(e^2)^(1/4)*2^(1
/2)*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-1/2*a/d*(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)
*(e*cot(d*x+c))^(1/2)+1)-1/4*a/d*e*2^(1/2)/(e^2)^(1/4)*ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/
2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))-1/2*a/d*e*2^(1/2)/(e^2)^(
1/4)*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)+1/2*a/d*e*2^(1/2)/(e^2)^(1/4)*arctan(-2^(1/2)/(e^2)^(1
/4)*(e*cot(d*x+c))^(1/2)+1)

________________________________________________________________________________________

maxima [A]  time = 0.90, size = 108, normalized size = 1.52 \[ \frac {{\left (a {\left (\frac {\sqrt {2} \log \left (\sqrt {2} \sqrt {e} \sqrt {\frac {e}{\tan \left (d x + c\right )}} + e + \frac {e}{\tan \left (d x + c\right )}\right )}{\sqrt {e}} - \frac {\sqrt {2} \log \left (-\sqrt {2} \sqrt {e} \sqrt {\frac {e}{\tan \left (d x + c\right )}} + e + \frac {e}{\tan \left (d x + c\right )}\right )}{\sqrt {e}}\right )} - \frac {4 \, a \sqrt {\frac {e}{\tan \left (d x + c\right )}}}{e}\right )} e}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)*(a+a*cot(d*x+c)),x, algorithm="maxima")

[Out]

1/2*(a*(sqrt(2)*log(sqrt(2)*sqrt(e)*sqrt(e/tan(d*x + c)) + e + e/tan(d*x + c))/sqrt(e) - sqrt(2)*log(-sqrt(2)*
sqrt(e)*sqrt(e/tan(d*x + c)) + e + e/tan(d*x + c))/sqrt(e)) - 4*a*sqrt(e/tan(d*x + c))/e)*e/d

________________________________________________________________________________________

mupad [B]  time = 0.78, size = 128, normalized size = 1.80 \[ -\frac {2\,a\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{d}-\frac {{\left (-1\right )}^{1/4}\,a\,\sqrt {e}\,\left (\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )-\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\right )}{d}-\frac {{\left (-1\right )}^{1/4}\,a\,\sqrt {e}\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,1{}\mathrm {i}}{d}-\frac {{\left (-1\right )}^{1/4}\,a\,\sqrt {e}\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,1{}\mathrm {i}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(c + d*x))^(1/2)*(a + a*cot(c + d*x)),x)

[Out]

- (2*a*(e*cot(c + d*x))^(1/2))/d - ((-1)^(1/4)*a*e^(1/2)*atan(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2))*1i)
/d - ((-1)^(1/4)*a*e^(1/2)*atanh(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2))*1i)/d - ((-1)^(1/4)*a*e^(1/2)*(a
tan(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2)) - atanh(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2))))/d

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ a \left (\int \sqrt {e \cot {\left (c + d x \right )}}\, dx + \int \sqrt {e \cot {\left (c + d x \right )}} \cot {\left (c + d x \right )}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))**(1/2)*(a+a*cot(d*x+c)),x)

[Out]

a*(Integral(sqrt(e*cot(c + d*x)), x) + Integral(sqrt(e*cot(c + d*x))*cot(c + d*x), x))

________________________________________________________________________________________